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ABSTRACT

In these lecture notes I will review the basic elements of the nuclear many body problem.
After a discussion of the Independent Particle Model I will introduce the nuclear effective
interaction in its Fock space representation. I will then separate its Monopole and Multi-
pole terms and discuss the dominant terms of the Multipole hamiltonian; the drivers of the
very strong nuclear correlations. I will then describe microscopically the most important
manifestations of these correlations in the nucleus: the superfluidity governed by the pairing
interaction; the nuclear vibrations, mainly of quadrupole and octupole type and the defi-
nition of the nuclear phonons, and finally I will address the microscopic description of the
permanently deformed nuclear rotors in the laboratory frame, a shape transition provoked
by the quadrupole quadrupole interaction.
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I. INTRODUCTION TO THE NUCLEAR MANY-BODY PROBLEM

In the Standard Model of Nuclear Structure the elementary components are nucleons (N
neutrons and Z protons, N+Z=A). The mesonic and quark degrees of freedom are inte-
grated out. In most cases non-relativistic kinematics is used. The bare nucleon-nucleon
(or nucleon-nucleon-nucleon) interactions are inspired by meson exchange theories or more
recently by chiral perturbation theory, and must reproduce the nucleon-nucleon phase shifts,
and the properties of the deuteron and other few body systems. The challenge is to find
Ψ(~r1, ~r2, ~r3, . . . ~rA) such that HΨ=EΨ, with:
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H =
A
∑

i

Ti +
A
∑

i,j

V2b(~ri, ~rj) +
A
∑

i,j,k

V3b(~ri, ~rj, ~rk) (1)

The knowledge of the eigenvectors Ψ and the eigenvalues E make it possible to obtain
electromagnetic moments, transition rates, weak decays, cross sections, spectroscopic factors,
etc. The task is indeed formidable. Only very recently and only for very light nuclei A≤10
the problem has been solved ”exactly” thanks to the pioneer work of Pandharipande, Wiringa
and Pieper, [1] which used variational methods (Green Function) solved by Monte Carlo
techniques (GFMC). More recently, the perturbative approach has been implemented in the
framework of the No Core Shell Model (NCSM) by Barrett, Navratil, and Vary [2]. And
even more recently, the techniques of lattice gauge theory together with Chiral Perturbation
Theory have been used with very promising results in very light nuclei [3]
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FIG. 1. (color online) Comparison of the GFMC results with the experimental data with and
without three body forces

A very important outcome of these calculations is compulsory need to include three body
forces in order to get correct solutions of the nuclear many body problem. The GFMC and
the NCSM are severely limited by the huge size of the calculations when A becomes larger
than twelve. For the rest of the chart of nuclides, approximate methods have to be used.
Except for the semiclasical ones (liquid drop) and the α-cluster models, all are based on
the Independent Particle Approximation. Beyond the limits of applicability of the fully ”ab
initio” descriptions, the methods of choice are the Interacting Shell Model and the Mean
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Field (and Beyond) approaches using Energy Density Functionals (aka density dependent
effective interactions, like the Gogny force). There is nowadays renewed efforts to connect
rigorously these two global methods and the bare two and three body nuclear interactions
by means of the full palette of the Many Body Perturbation Methods. If this is achieved,
they will deserve also the ”ab initio” label.

II. THE INDEPENDENT PARTICLE MODEL

The basic idea of the Independent Particle Mode (IPM) is to assume that, at zeroth order,
the result of the complicated two body interactions among the nucleons is to produce an
average self-binding potential. Mayer and Jensen (1949) proposed an spherical mean field
consisting in an isotropic harmonic oscillator plus a strongly attractive spin-orbit potential
and an orbit-orbit term.

H =
∑

i

h(~ri) (2)

h(r) = −V0 + t+
1

2
mω2r2 − Vso

~l · ~s− VBl
2 (3)

Later, other functional forms , which follow better the form of the nuclear density and have
a more realistic asymptotic behavior, e.g. the Woods-Saxon well, were adopted

V (r) = V0

(

1 + e
r−R

a

)−1

(4)

with

V0 =

(

−51 + 33
N − Z

A

)

MeV (5)

and

Vls(r) =
V ls
0

V0
(~l · ~s)r

2
0

r

dV (r)

dr
; V ls

0 = −0.44V0 (6)

The eigenvectors of the IPM are characterized by the radial quantum number n, the orbital
angular momentum l, the total angular momentum j and its z projection m. With the
choice of the harmonic oscillator, the eigenvalues are:

ǫnljm = −V0 + h̄ω(2n+ l + 3/2)

−Vso
h̄2

2
(j(j + 1)− l(l + 1)− 3/4)− VBh̄

2l(l + 1) (7)

In order to reproduce the nuclear saturation,

h̄ω = 45A−1/3 − 25A−2/3 (8)

With a suitable choice of the parameters, they explain the magic numbers and in the large
A limit, the volume, the surface and (half) the symmetry terms of the semiempirical mass
formula as well.

The wave functions of the isotropic harmonic oscillator without spin-orbit can be written
as:
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Ψnlm(r, θ, φ) =
1

r
Rnl(r) Ylm(θ, φ) (9)

By convention the n’s start at zero, therefore the self energies read:

Enl = (2n+ l + 3/2) h̄ω = (p+ 3/2)h̄ω (10)

Ylm(θ, φ) are the spherical harmonics and:

Rnl(r) = (−1)l
(

2 (2ν)l+3/2 n!

Γ(n+ l + 3/2)

)1/2

rl+1 e−νr2 Ll+1/2
n (2νr2) (11)

The parameter ν is defined as
mω

2h̄
, thus 2ν =

1

b2
. The degeneracy of each shell is

(p+1)(p+2), and the L’s are the Laguerre (associated) polynomials, defined as:

Lr
k(x) = (−1)k

k
∑

p=0

(−1)p
Γ(r + k + 1)

p! (k − p)! Γ(r + k − p+ 1)
xk−p (12)

k takes the values 0, 1, 2, . . .. The Γ functions are defined by:

Γ(a) =

∫ ∞

0

xa−1 e−x dx (13)

and verify Γ(a+ 1) = a Γ(a). When the spin orbit coupling is taken into account, we must
include explicitly the spin part of the wave function and change the coupling scheme from
[L S] to [JJ].

• VOCABULARY

• STATE: a solution of the Schrödinger equation with a one body potential; e.g. the
H.O. or the W.S. It is characterized by the quantum numbers nljm and the projection
of the isospin tz

• ORBIT: the ensemble of states with the same nlj, e.g. the 0d5/2 orbit. Its degeneracy
is (2j+1)

• SHELL: an ensemble of orbits quasi-degenerated in energy, e.g. the pf shell

• MAGIC NUMBERS: the numbers of protons or neutrons that fill orderly a certain
number of shells

• GAP: the energy difference between two shells

• SPE, single particle energies, the eigenvalues of the IPM hamiltonian

• ESPE, effective single particle energies, the eigenvalues of the monopole hamiltonian.

The usual procedure to generate a mean field in a system of N interacting fermions, starting
from their free interaction, is the Hartree-Fock approximation, extremely successful in atomic
physics. Whatever the origin of the mean field, the eigenstates of the N-body problem are
Slater determinants i.e. anti-symmetrized products of N single particle wave functions. In
the nucleus, there is a catch, because the very strong short range repulsion and the tensor
force make the HF approximation based upon the bare nucleon-nucleon force impracticable.
However, at low energy, the nucleus do manifest itself as a system of independent particles
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in many cases, and when it does not, it is due to the medium range correlations that produce
strong configuration mixing and not to the short range repulsion. Does the success of the
shell model really “prove” that nucleons move independently in a fully occupied Fermi sea as
assumed in HF approaches? In fact, the single particle motion can persist at low energies in
fermion systems due to the suppression of collisions by Pauli exclusion (see Pandharipande
et al., [4]) Brueckner theory takes advantage of the Pauli blocking to regularize the bare
nucleon- nucleon interaction, in the form of density dependent effective interactions of use
in HF calculations or G-matrices for large scale shell model calculations.

An example of regularized interaction is the one proposed by Brink and Boeker [5], whose
central part is:

Vc(|~r1 − ~r2|) =
2

∑

i=1

[1−mi(1 + PσPτ )] vi e
−|~r1−~r2|2/µ2

i (14)

For the spin orbit they took a one body approximation:

Vls =
−12 MeV

h̄2
√
A

~l · ~s (15)

The values of the parameters are:

i µi(fm) vi (MeV) mi

1 0.7 471.1 -0.43

2 1.4 -163.8 0.51

To be more realistic, one should refine the channel dependence of the central terms, include a
two body spin-orbit interaction, and more importantly, a term which depends on the density.
After this re-vamping, the Brink and Boeker interaction becomes the Gogny interaction [6]
extremely successful in numerous mean field applications (and beyond).
The wave function of the ground state of a nucleus in the IPM is the product of a Slater
determinant for the Z protons that occupy the Z lowest states in the mean field and another
Slater determinant for the N neutrons in the N lowest states of the mean field. In second
quantization, this state can be written as:

|N〉 · |Z〉 (16)

with

|N〉 = n†
1n

†
2 . . . n

†
N |0〉 (17)

|Z〉 = z†1z
†
2 . . . z

†
Z |0〉 (18)

In a system of non interacting fermions the occupied states have occupation number 1
and the empty ones occupation number 0. In reality we find rather the situation depicted
in Figure 2. In spite of that, the nuclear quasi-particles resemble extraordinarily to the
mean field solutions of the IPM. This was demonstrated by the beautiful electron scattering
experiment of Cavedon et al.(1982) [7] in which they extracted the charge density difference
between 206Pb and 205Tl, that, in the IPM limit is just the square of the 2s1/2 orbit wave
function. As can be seen in Figure 3, the shape of the 2s1/2 orbit is very well given by
the mean field calculation. To make the agreement quantitative the calculated density had
to be scaled down with the occupation number. For a very pedagogical discussion of the
basis of the IPM, read the article “ Independent particle motion and correlations in fermion
systems” by V. R. Pandharipande, et al., RMP 69 (1997) 981.
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FIG. 2. Dilution of the Spectroscopic strength by the bare N-N interaction. Results for nuclear
matter.

FIG. 3. The charge density difference between 206Pb and 205Tl, experiment compared with the
IPM description

III. BEYOND THE INDEPENDENT PARTICLE MODEL

It is quite obvious that the IPM cannot comply with the extreme variety of manifestations
of the nuclear dynamics. In fact, even in the most favorable cases, as at the doubly magic
nuclei, its limitations are dramatically evident. Just a look at Figure 4 proves it. There we
have plotted part of the level scheme of 40Ca. In the IPM limit we expect a 0+ ground state
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(no problem) and a gap of about h̄ω (10 MeV) before finding a bunch of quasi-degenerate
levels of particle-hole type and negative parity. In fact, the first excited state lies at 3.5 MeV
and is again a 0+, which, upon experimental and theoretical scrutiny turns out to be the
band head of a deformed band of 4p-4h nature. Even more exotic is the 0+ at 5.1 MeV,
which is the band head of a superderformed! band of 8p-8h structure. Going beyond the
mean field is compulsory because the nuclear dynamics is dominated in most cases by the
correlations.
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FIG. 4. Partial level scheme of 40Ca; experiment vs large scale shell model results [8]

To go beyond the IPM, there are two main routes; The mean field way relies in Hartree
Fock based approaches which use density dependent interactions of different sort; Skyrme,
Gogny, or Relativistic Mean Field parametrizations. The correlations are taken into account
by explicitly breaking the symmetries in the mean field. That’s why they are often referred to
as ”intrinsic” descriptions. Projections before (VAP) or after (PAV) variation are enforced to
restore the conserved quantum numbers. Ideally, configuration mixing is also implemented
through the Generator Coordinate Method. These approaches will be duly treated in other
lectures of this School. The other route pertains to the Interacting Shell Model (ISM) which
can be seen as an approximation to the exact solution of the nuclear A-body problem using
effective interactions in restricted spaces. The ISM wave functions respect the symmetries of
the Hamiltonian and these approaches are sometimes called ”laboratory frame” descriptions.

Let’s proceed through a kind of formal solution to the A-body problem. The single par-
ticle states (i,j, k, .....), which are the solutions of the IPM, provide as well a basis in the
space of the occupation numbers (Fock space). The many body wave functions are Slater
determinants:

Φ = a†i1 , a
†
i2
, a†i3, . . . a

†
iA
|0〉 (19)

We can distribute the A particles in all the possible ways in the available single particle
states. This provides a complete basis in the Fock space. The number of Slater determinants
will be huge but not infinite because the theory is no longer valid beyond a certain cutt-off.
Therefore, the ”exact” solution can be expressed as a linear combination of the basis states:
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Ψ =
∑

α

cαΦα (20)

and the solution of the many body Schödinger equation

HΨ = EΨ (21)

is transformed in the diagonalization of the matrix:

〈Φα|H|Φβ〉 (22)

whose eigenvalues and eigenvectors provide the ”physical” energies and wave functions. A
Shell Model calculation thus amounts to diagonalizing the effective nuclear hamiltonian in
the basis of all the Slater determinants that can be built distributing the valence particles in
a set of orbits which is called ”valence space”. The orbits that are always full form the ”core”.
If we could include all the orbits in the valence space (a full No Core calculation) we should
get the ”exact” solution. The effective interactions are obtained from the bare nucleon-
nucleon interaction by means of a regularization procedure aimed to soften the short range
repulsion. In other words, using effective interactions we can treat the A-nucleon system in
a basis of independent quasi-particles. As we reduce the valence space, the interaction has
to be renormalized again in a perturbative way. The three pillars of the shell model are then
the effective interactions, the valence spaces and the algorithms and codes put at work to
solve the huge computational challenges posed by the solution of this secular problem. See
for instance, E. Caurier, G. Mart́ınez-Pinedo, F. Nowacki, A. Poves and A. P. Zuker. “The
Shell Model as a Unified View of Nuclear Structure”, Reviews of Modern Physics, 77 (2005)
427.

IV. THE EFFECTIVE INTERACTIONS IN FOCK’S SPACE

Using the creation and annihilation operators of particles in the states of the underlying
spherical mean field in the coupled representation, we can write the Hamiltonian as:

H =
∑

rr′

ǫrr′(a
+
r ar′)

0 +
∑

r≤s,t≤u,Γ

W Γ
rstuZ

+
rsΓ · ZtuΓ, (23)

where Z+
Γ ( ZΓ) is the coupled product of two creation (annihilation) operators.

Z+
rsΓ = [a†ra

†
s]
Γ (24)

Γ is a shorthand for (J,T); r, s ..... run over the orbits of the valence space; ǫrr′ are the
single particle energies (or the kinetic energies in the no-core calculations) and W Γ

rstu the
antisymmetrized two body matrix elements:

W Γ
rstu = 〈jrjs(JT )|V |jtju(JT )〉 (25)

In the occupation number representation (Fock space) all the information about the inter-
action is contained in its two body matrix elements. The many body problem then reduces
to the manipulation of the creation and annihilation operators using the Wick theorem and
techniques alike. The most general method to compute the two body matrix elements is
due to Slater and carries its name. When the independent particle wave functions are those
of the harmonic oscillator or if they can be represented by linear combination of a few har-
monic oscillator states, the method of choice is that of Brody and Moshinsky. For a detailed
description of both methods we refer to Heyde’s book ”The Nuclear Shell Model”.
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V. MONOPOLE AND MULTIPOLE COMPONENTS OF THE INTERACTION

Without loosing the simplicity of the Fock space representation, we can recast the two
body matrix elements of any effective interaction in a way full of physical insight, following
Dufour-Zuker rules [9].

Any effective interaction can be split in two parts:

H = Hm(monopole) +HM(multipole). (26)

whereHm contains all the terms that are affected by a spherical Hartree-Fock variation, hence
it is responsible for the global saturation properties and for the evolution of the spherical
single particle energies.

Hm =
∑

ǫini +
∑

[

1

(1 + δij)
aij ni(nj − δij)

+
1

2
bij

(

Ti · Tj −
3ni

4
δij

)]

+
∑

Aijkninjnk (27)

The coefficients a and b are defined in terms of the centröıds (angular averages):

V T
ij =

∑

J W
JT
ijij[J ]

∑

J [J ]
(28)

as: aij =
1
4
(3V 1

ij + V 0
ij), bij = V 1

ij − V 0
ij , the sums running over Pauli allowed values.

It is easy to verify that the expectation value of the full Hamiltonian in a Slater determinant
for closed shells, has the same expression than the Hartree-Fock energy:

〈H〉 =
∑

i

〈i|T |i〉+
∑

ij

〈ij|G|ij〉 (29)

where i and j run over the occupied states. If the two body matrix elements are written in
coupled formalism and we denote the orbits by α, β, . . . , the expression reads:

〈H〉 =
∑

α

(2jα + 1)〈α|T |α〉+
∑

α≤β

∑

J,T

(2J + 1)(2T + 1)〈jαjβ(JT )|G|jαjβ(JT )〉 (30)

The Monopole Hamiltonian governs the evolution of effective spherical single particle ener-
gies with the number of particles in the valence space, schematically:

ǫj({ni}) = ǫj({ni = 0}) +
∑

i

aijni +
∑

i,k

Aijknink (31)

It is important to realize that even small defects in the centroids can produce large changes
in the relative position of the different configurations due to the appearance of quadratic
terms involving the number of particles in the different orbits.
The Multipole Hamiltonian: HM can be written in two representations, particle-particle and
particle-hole:

HM =
∑

r≤s,t≤u,Γ

W Γ
rstuZ

+
rsΓ · ZtuΓ, (32)
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TABLE I. Strengths of the coherent multipole components of different interactions for the pf -shell.

Interaction particle-particle particle-hole

JT=01 JT=10 λτ=20 λτ=40 λτ=11

KB3 -4.75 -4.46 -2.79 -1.39 +2.46

FPD6 -5.06 -5.08 -3.11 -1.67 +3.17

GOGNY -4.07 -5.74 -3.23 -1.77 +2.46

GXPF1 -4.18 -5.07 -2.92 -1.39 +2.47

BONNC -4.20 -5.60 -3.33 -1.29 +2.70

HM =
∑

rstuΓ

[γ]1/2
(1 + δrs)

1/2(1 + δtu)
1/2

4
ωγ
rtsu(S

γ
rtS

γ
su)

0, (33)

where Z+
Γ ( ZΓ) is the coupled product of two creation (annihilation) operators and Sγ is

the coupled product of one creation and one annihilation operator.

Z+
rsΓ = [a†ra

†
s]
Γ (34)

Sγ
rs = [a†ras]

γ (35)

The W and ω matrix elements are related by a Racah transformation,

ωγ
rtsu =

∑

Γ

(−)s+t−γ−Γ

{

r s Γ

u t γ

}

W Γ
rstu[Γ], (36)

W Γ
rstu =

∑

γ

(−)s+t−γ−Γ

{

r s Γ

u t γ

}

ωγ
rtsu[γ]. (37)

The operators Sγ=0
rr are just the number operators for orbits r and Sγ=0

rr′ the spherical Hartree-
Fock particle hole vertices. Both must have null coefficients if the monopole hamiltonian
satisfies Hartree-Fock self-consistency. The operator Z+

rrΓ=0 creates a pair of particle coupled
to J=0. The terms W Γ

rrss Z+
rrΓ=0 · ZssΓ=0 represent different kinds of pairing hamiltonians.

The operators Sγ
rs are typical vertices of multipolarity γ. For instance, γ=(J=1,L=0,T=1)

contains a (~σ · ~σ) (~τ · ~τ ) term which is nothing else but the Gamow-Teller component of the
nuclear interaction. The terms Sγ

rs γ=(J=2,T=0) are of quadrupole type r2Y2. They are
responsible for the existence of deformed nuclei, and they are specially large and attractive
when jr − js=2 and lr − ls=2.

A careful analysis of the available realistic effective nucleon-nucleon interactions obtained
with different methods, reveals that the multipole hamiltonian is universal and dominated by
BCS-like isovector and isoscalar pairing plus quadrupole-quadrupole and octupole-octupole
terms of very simple nature (rλYλ · rλYλ). As an example we list in Table I the strengths of
the coherent multipole components of different interactions for the pf -shell.
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VI. VALENCE SPACES AND CODES

An ideal valence space should incorporate the most relevant degrees of freedom for the nuclei
under study and be computationally tractable. Classical 0h̄ω valence spaces are provided
by the major oscillator shells p, sd and pf . As we move far form stability other choices are
compulsory; for instance for the very neutron rich nuclei around N=28, a good choice is to
take the sd shell for protons and the pf shell for neutrons, for the very neutron rich Cr, Fe,
Ni, and Zn, one should rather take r3-(0g9/2, 1d5/2) for the neutrons and pf for protons (in a
major harmonic oscillator shell of principal quantum number p the orbit j=p+1/2 is called
intruder and the remaining ones are denoted by rp). To describe the intruders around N
and/or Z=20, a good valence space is r2-pf . For the nuclei above 100Sn, the valence space
r4-h11/2 has been also widely used.

Algorithms include Direct Diagonalisation, Lanczos, Monte Carlo Shell Model, Quantum
Monte Carlo Diagonalization, Density Matrix Renormalization Group, etc. There are also a
number of different extrapolation ansatzs. The Strasbourg-Madrid codes (Antoine, Nathan),
can deal with problems involving basis of 1010 Slater determinants, using relatively modest
computational resources. Other competitive codes in the market are OXBACH, NUSHELL
and MSHELL.

VII. COLLECTIVITY IN NUCLEI: BASICS

For a given interaction, a many body system would or would not display coherent features
at low energy depending on the structure of the mean field around the Fermi level. So, when
the spherical mean field around the Fermi surface makes the pairing interaction dominant,
the nucleus becomes superfluid, if the quadrupole-quadrupole interaction is dominant the
nucleus acquires permanent deformation, and in the extreme limit in which the monopole
hamiltonian would be negligible, the multipole interaction would produce superfluid nuclear
needles. Magic nuclei are spherical despite the strong multipole interaction, because the
large gaps in the nuclear mean field at the Fermi surface block the correlations.

Lets consider a simple model in which the valence space only contains two Slater determi-
nants which have diagonal energies that differ by ∆ and an off-diagonal matrix element δ.
The eigenvalues and eigenvectors of this problem are obtained diagonalizing the matrix:

(

0 δ

δ ∆

)

(38)

In the limit δ << ∆ we can use perturbation theory and no special coherence is found. On
the contrary in the degenerate case, ∆ → 0, the eigenvalues of the problem are ±δ and the
eigenstates are the 50% mixing of the unperturbed ones with different signs. They are the
germ of the maximally correlated (or anticorrelated) states.

We can generalize this example by considering a degenerate case with N Slater determinants
with equal (and attractive) diagonal matrix elements (– ∆) and off-diagonal ones of the
same magnitude. The problem now is that of diagonalizing the matrix:
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−∆



















1 1 1 . . .

1 1 1 . . .

1 1 1 . . .

. . . . . .

. . . . . .

. . . . . .



















(39)

which has range 1 and whose eigenvalues are all zero except one which has the value -G∆.
This is the coherent state. Its corresponding eigenvector is a mixing of the N unperturbed
states with amplitudes 1√

N

VIII. NUCLEAR SUPERFLUIDITY: PAIRING COLLECTIVITY

The pairing hamiltonian for one shell expressed in the m-scheme basis of two particles has
a very similar matrix representation;

−G



















1 −1 1 . . .

−1 1 −1 . . .

1 −1 1 . . .

. . . . . .

. . . . . .

. . . . . .



















(40)

and its coherent solution is just the state of the two particles coupled to zero which gains
an energy -GΩ, (Ω= j + 1/2 is the degeneracy of the shell). It can be written as:

Z†
j |0〉 =

1√
Ω

∑

m>0

(−1)j+ma†jma
†
j−m (41)

Using the commutation relations:

[

Zj, Z
†
j

]

= 1− n̂

Ω
; and

[

H,Z†
j

]

= −G(Ω− n̂+ 2)Z†
j (42)

it is possible to construct the eigenstates of H for n particles consisting of n/2 pairs coupled
to J=0. These states are labeled as seniority zero states. The quantum number v (seniority)
counts the number of particles not coupled to zero.

|n, v = 0〉 = (Z†
j )

n

2 |0〉 and E(n, v = 0) = −G

4
n(2Ω− n + 2) (43)

We can construct also eigenstates with higher seniority using the operators B†
J which create

a pair of particles coupled to J6=0. These operators satisfy the relation:
[

H,B†
J

]

|0〉 = 0 (44)

States which contain m B†
J operators have seniority v = 2m. Their eigenenergies are,

E(n, v)− E(n, v = 0) =
G

4
v(2Ω− v + 2) (45)
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Notice that the gap is independent of the number of particles. The generalization to odd
number of particles is trivial.

The case of two particles in several shells is also tractable and has great heuristic value. The
problem in matrix form reads:



















2ǫ1 −GΩ1 −G
√
Ω1Ω2 −G

√
Ω1Ω3 . . .

−G
√
Ω2Ω1 2ǫ2 −GΩ2 −G

√
Ω2Ω3 . . .

−G
√
Ω3Ω1 −G

√
Ω3Ω2 2ǫ3 −GΩ3 . . .

. . . . . .

. . . . . .

. . . . . .



















(46)

There is a limit in which maximum coherence is achieved; when the orbits have the same Ω
and they are degenerate. Then the coherent pair is evenly distributed among the shells and
its energy is E=-G

∑

iΩ. All the other solutions remain at their unperturbed energies.

The problem can be turned into a dispersion relation as well. Let us write the most general
solution as:

|α〉 =
∑

j

Xα
j Z

†
j |0〉 (47)

Plugging it in the Schrödinger equation; H|α〉 = Eα|α〉 we get,

(2ǫk −Eα)X
α
k = G

∑

j

√

ΩjΩkX
α
j (48)

Multiplying by
√
Ωk both sides and summing over k we obtain the dispersion relation:

1

G
=

∑

k

Ωk

2ǫk −Eα
(49)

The dispersion relation can be solved graphically or iteratively. As we have seen before,
we expect one coherent solution (the collective pair) to gain a lot of energy and the rest of
the solutions be very close to the unperturbed ones. If we assume that the single particle
energies are degenerate and take ǫk =< ǫ > we obtain,

Eα = 2 < ǫ > −G
∑

k

Ωk (50)

In this limit the energy gain is equivalent to the one in a single shell of degeneracy
∑

k Ωk

For the case of many particles in non degenerate orbits the problem is usually solved in the
BCS or Hartree-Fock Bogolyuvov approximations. Other approaches, which do not break
the particle number conservation, are either the Interacting Shell Model or are based on it,
these include the Interacting Boson Model and its variants and different group theoretical
approximations.

IX. VIBRATIONAL SPECTRA: QUADRUPOLE AND OCTUPOLE

COLLECTIVITY.

In the semiclassical description, vibrational spectra are described as the quantized harmonic
modes of vibration of the surface of a liquid drop. The restoring force coming from the
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competition of the surface tension and the Coulomb repulsion. This is hardly germane to
reality and to the microscopic description that we will develop in a simplified way. Let’s
just remind which are the characteristic features of a nuclear vibrator; first, a harmonic
spectrum such as in the drawing below and second, enhanced Eλ transitions between the
states differing in one vibrational phonon.

0+, 2+, ....... (2λ)+,

h̄ωλ

λπ

h̄ωλ

0+

Imagine that for a given even-even nucleus the orbits around the Fermi level are such as
depicted in the graph below. Its ground state would have Jπ =0+ and, in the IPM, the
lowest excited states correspond to promoting one particle from the occupied orbits to the
empty ones. They are many, quasi-degenerate, and should appear at excitation energies ∆.

m, n, l, ...... (empty)

∆

i, j, k, , ...... (full)

Let’s take now into account the multipole hamiltonian, that, for simplicity will be of sepa-
rable form, and choose as valence space just the particle-hole states,

〈nj|V |mi〉 = βλQ
λ
njQ

λ
mi (51)

the wave function can be developed in the p-h basis as:

Ψ =
∑

Cmi|mi〉 (52)

the Schödinger equation HΨ=EΨ can thus be written as:

Cnj(E − ǫnj) =
∑

mi

βλCmiQ
λ
njQ

λ
mi (53)

then,

Cnj =
βλQ

λ
nj

E − ǫnj

∑

mi

CmiQ
λ
mi (54)
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and, trivially,

1 = βλ

∑

nj

(Qλ
nj)

2

E − ǫnj
(55)

A graphical analysis of this equation (Figure 5) shows that all its solutions except one are
very close to the unperturbed values ǫnj , the remaining one is the lowest and it is well
separated from the others, very much as in the pairing case discussed before. Assuming

FIG. 5. Graphical analysis of the dispersion relation of equation 55

ǫnj ≈ ǫnj = ∆, we obtain:

E = ∆+ βλ

∑

nj

(Qλ
nj)

2 (56)
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If the interaction is attractive βλ < 0, the lowest state gains an energy which is proportional
to βλ, the strength of the multipole interaction, and to the coherent sum of the squared one
body matrix elements of the one body multipole operators between the particle and hole or-
bits in the space. This mechanism of coherence explains the appearance of vibrational states
in the nucleus and represents the basic microscopic description of the nuclear ”phonons”.
Because the couplings βλ are constant except for a global scaling, the onset of collectivity
requires the presence of several quasi degenerate orbits above and below the Fermi level.
In addition, these orbits must have large matrix elements with the multipole operator of
interest.

The wave function of the coherent (collective) state (phonon, vibration) has the following
form:

Ψc(J = λ) =

∑

nj

Qλ
nj |nj〉

∑

nj

(Qλ
nj)

2
(57)

The coherent state is coherent with the transition operator Qλ because the probability of
its Eλ decay to the 0+ ground state is very much enhanced

B(Eλ) ∼ |〈0+|Qλ|Ψc(J = λ)〉|2 =
∑

nj

(Qλ
nj)

2 (58)

which should be much larger than the single particle limit (many WU). Clearly, a large
value of the B(Eλ) does not imply necessarily the existence of permanent deformation in
the ground state. Notice also that nothing prevents that:

|βλ

∑

nj

(Qλ
nj)

2| > ∆ (59)

In this case the vibrational phonon is more bound than the ground state and the model is no
longer valid. What happens is that a phase transition from the vibrational to the rotational
regime takes place as the nucleus acquires permanent deformation of multipolarity λ. The
separation between filled and empty orbits does not hold any more and both have to be
treated at the same footing.

X. DEFORMED NUCLEI; INTRINSIC vs. LABORATORY FRAME

APPROACHES

The route to the description of permanently deformed nuclear rotors bifurcates now into
laboratory frame and intrinsic descriptions. The latter include the deformed shell model
(Nilsson) and the Deformed Hartree- Fock approximation, plus the Beyond Mean Field
approaches as angular momentum projection and configuration mixing with the generator
coordinate method. The former, the Interacting Shell Model and the group theoretical
treatments of the quadrupole-quadrupole interaction like Elliott’s SU(3) and its variants
[10–12].
A case where the two approaches could be confronted was 48Cr (four protons and four
neutrons on top of 40Ca) where an ISM description in the full pf -shell was for the first time
possible about one decade ago [13]. The mean field intrinsic description was a Cranked
Hartree Fock Bogolyuvov description using the Gogny force. The results are presented in
Figure 6. Both calculations reproduce the rotor like behavior at low and medium spin and
the existence of a backbending at J=12. However, the CHFB description misses badly the
size of the moment of inertia due to absence of neutron proton pairing correlations in its
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TABLE II. Quadrupole properties of the yrast band of 48Cr

J B(E2)exp B(E2)th Q0(B(E2))

2 321(41) 228 107

4 330(100) 312 105

6 300(80) 311 100

8 220(60) 285 93

10 185(40) 201 77

12 170(25) 146 65

14 100(16) 115 55

16 37(6) 60 40

wave functions. The Gogny force does contain the right proton neutron T=0 and T=1
pairing as shown by the results of the ISM calculation with its two body matrix elements.

0.0 1.0 2.0 3.0 4.0
Eγ (MeV)

2

4

6

8

10

12

14

16

J 

Exp

SM-KB3
CHFB
SM-GOGNY

FIG. 6. The yrast band of 48Cr; experimental data compared with the ISM and CHFB calculations.

The laboratory frame wave-functions are indeed collective as can be seen in Table II where we
have listed the B(2)’s and spectroscopic quadrupole moments compared with the experiment.
From the calculated values we can extract the intrinsic quadrupole moments which are
roughly independent of J below the backbending as in a well behaved Bohr-Mottelson rotor.
From the intrinsic quadrupole moment a deformation parameter β=0.28 can be extracted
which is in very good agreement with the CHFB result.

The mechanism that produces permanent deformation and rotational spectra in nuclei is
much better understood in the framework of the SU(3) symmetry of the isotropic harmonic
oscillator and its implementation in Elliott’s model. The basic simplification of the model
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is threefold; i) the valence space is limited to one major harmonic oscillator (HO) shell; ii)
the monopole hamiltonian makes the orbits of this shell degenerate and iii) the multipole
hamiltonian only contains the quadrupole-quadrupole interaction. This implies (mainly)
that the spin orbit splitting and the pairing interaction are put to zero. Let’s then start
with the isotropic HO which in units m=1 ω=1 can be written as:

H0 =
1

2
(p2 + r2) =

1

2
(~p+ i~r)(~p− i~r) +

3

2
h̄ = h̄( ~A† ~A +

3

2
) (60)

with

~A† =
1√
2h̄

(~p+ i~r) ~A =
1√
2h̄

(~p− i~r) (61)

which have bosonic commutation relations. H0 is invariant under all the transformations
which leave invariant the scalar product ~A† ~A. As the vectors are three dimensional and
complex, the symmetry group is U(3). We can built the generators of U(3) as bi-linear
operators in the A’s. The anti-symmetric combinations produce the three components of
the orbital angular momentum Lx, Ly and Lz, which are in turn the generators of the rotation
group O(3). From the six symmetric bi-linears we can retire the trace that is a constant;
the mean field energy. Taking it out we move into the group SU(3). The five remaining
generators are the five components of the quadrupole operator:

q(2)µ =

√
6

2h̄
(~r ∧ ~r)(2)µ +

√
6

2h̄
(~p ∧ ~p)(2)µ (62)

The generators of SU(3) transform single nucleon wavefunctions of a given p (principal
quantum number) into themselves. In a single nucleon state there are p oscillator quanta
which behave as l=1 bosons. When we have several particles we need to construct the irreps
of SU(3) which are characterized by the Young’s tableaux (n1, n2, n3) with n1≥n2≥n3 and
n1+n2+ n3=Np (N being the number of particles in the open shell). The states of one
particle in the p shell correspond to the representation (p,0,0). Given the constancy of Np
the irreps can be labeled with only two numbers. Elliott’s choice was λ=n1-n3 and µ=n2-n3.
In the cartesian basis we have; nx=a+µ, ny=a, and nz=a+λ+µ, with 3a+λ+2µ=Np.

The quadratic Casimir operator of SU(3) is built from the generators

~L =

N
∑

i=1

~l(i) Q(2)
α =

N
∑

i=1

q(2)α (i) (63)

as:

CSU(3) =
3

4
(~L · ~L) + 1

4
(Q(2) ·Q(2)) (64)

and commutes with them. With the usual group theoretical techniques, it can be shown
that the eigenvalues of the Casimir operator in a given representation (λ, µ) are:

C(λ, µ) = λ2 + λµ+ µ2 + 3(λ+ µ) (65)

Once these tools ready we come back to the physics problem as posed by Elliott’s hamiltonian

H = H0 + χ(Q(2) ·Q(2)) (66)

which can be rewritten as:
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H = H0 + 4χCSU(3) − 3χ(~L · ~L) (67)

The eigenvectors of this problem are thus characterized by the quantum numbers λ, µ, and
L. We can choose to label our states with these quantum numbers because O(3) is a subgroup
of SU(3) and therefore the problem has an analytical solution:

E(λ, µ, L) = Nh̄ω(p+
3

2
) + 4χ(λ2 + λµ+ µ2 + 3(λ+ µ))− 3χL(L+ 1) (68)

This important result can be interpreted as follows: For an attractive quadrupole quadrupole
interaction (χ < 0) the ground state of the problem pertains to the representation which
maximizes the value of the Casimir operator, and this corresponds to maximizing λ or µ (the
choice is arbitrary). If we look at that in the cartesian basis, this state is the one which has
the maximum number of oscillator quanta in the Z-direction, thus breaking the symmetry
at the intrinsic level. We can then speak of a deformed solution even if its wave function
conserves the good quantum numbers of the rotation group, i.e. L and Lz. For that one (and
every) (λ, µ) representation, there are different values of L which are permitted, for instance
for the representation (λ, 0) L=0,2,4. . . λ. And their energies satisfy the L(L+1) law, thus
giving the spectrum of a rigid rotor. The problem of the description of the deformed nuclear
rotors in the laboratory frame is thus formally solved.

We can describe the intrinsic states and its relationship with the physical ones using another
chain of subgroups of SU(3). The one we have used until now is; SU(3)⊃O(3)⊃U(1) which

corresponds to labeling the states as Ψ([f̃ ](λµ)LM). [f̃ ] is the representation of U(Ω) conju-
gate of the U(4) spin-isospin representation which guarantees the antisymmetry of the total
wave function. For instance, in the case of 20Ne, the fundamental representation (8,0) (four

particles in p=2) is fully symmetric, [f̃ ]=[4], and its conjugate representation in the U(4) of
Wigner [1, 1, 1, 1], fully antisymmetric. The other chain of subgroups, SU(3)⊃SU(2)⊃U(1),
does not contain O(3) and therefore the total orbital angular momentum is not a good quan-

tum number anymore. Instead we can label the wave functions as; Φ([f̃ ](λµ)q0ΛK), where
q0 is the intrinsic quadrupole moment whose maximum value is q0 = 2λ + µ + 3. K is the
projection of the angular momentum on the Z-axis and Λ is an angular momentum without
physical meaning. Both representations provide a complete basis, therefore it is possible to
write the physical states in the basis of the intrinsic ones. Actually, the physical states can
be projected out of the intrinsic states with maximum quadrupole moment as:

Ψ([f̃ ](λµ)LM) =
2L+ 1

a(λµKL)

∫

DL
MK(ω)Φω([f̃ ](λµ)(q0)maxΛK)dω (69)

Remarkably, this is the same kind of expression used in the unified model; the Wigner func-
tions D being the eigenfunctions of the rigid rotor and the intrinsic functions the solutions
of the Nilsson model.

Elliott’s model was initially applied to nuclei belonging to the sd-shell that show rotational
features like 20Ne and 24Mg. The fundamental representation for 20Ne is (8,0) and its intrinsic
quadrupole moment 19 b2 ≈ 60 efm2. For 24Mg we have (8,4) and 23 b2 ≈ 70 efm2. To
compare these figures with the experimental values we need to know the transformation
rules from intrinsic to laboratory frame quantities and vice versa. In the Bohr Mottelson
model these are:

Q0(s) =
(J + 1) (2J + 3)

3K2 − J(J + 1)
Qspec(J), K 6= 1 (70)

B(E2, J → J − 2) =
5

16π
e2|〈JK20|J − 2, K〉|2Q0(t)

2 K 6= 1/2, 1; (71)
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The expression for the quadrupole moments is also valid in the Elliott’s model. However
the one for the B(E2)’s is only approximately valid for very low spins. Using them it can
be easily verified that the SU(3) predictions compare nicely with the experimental results
Qspec(2

+)=–23(3) efm2 and B(E2)(2+→0+)=66(3) e2fm4 for 20Ne andQspec(2
+)=–17(1) efm2

and B(E2)(2+→0+)=70(3) e2fm4 for 24Mg.

Besides Elliott’s SU(3) there are other approximate symmetries related to the quadrupole
quadrupole interaction which are of great interest. Pseudo-SU3 applies when the valence
space consists of a quasi-degenerate harmonic oscillator shell except for the orbit with max-
imum j, this space has been denoted by rp before. Its quadrupole properties are the SU(3)
ones of the shell with (p-1). Quasi-SU3 applies in a regime of large spin orbit splitting, when
the valence space contains the intruder orbit and the ∆j=2, ∆l=2; ∆j=4, ∆l=4; etc, orbits
obtained from it. Its quadrupole properties are described in ref. [14]. These symmetries turn
out to be at the root of the appearance of islands of inversion far from stability. They are
more prominent at the neutron rich side and occur when the configurations which correspond
to the neutron shell closures at N=8, 20, 28 and 40 are less bound than the intruder ones
(more often deformed) built by promoting neutrons across the Fermi level gap. The reason
of the inversion is that the intruder configurations maximize the quadrupole correlations and
thus their energy gains. This is only possible when the orbits around the Fermi level can
develop the symmetries of the quadrupole interaction. For instance, at N=20 the intruder
states in 32Mg have four sd protons in Quasi-SU3, two sd neutron holes in Pseudo-SU3 and
two pf neutrons in Quasi-SU3. This leads to a huge gain of correlation energy (typically
12 MeV) which suffices to turn the intruders into ground states.
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