Fission -A complete laboratory

Karl-Heinz Schmidt

Joliot-Curie School "Physics on the femtometer scale"

La Colle Sur Loup – Nice – Sept. 12-17, 2011

Lay out

- From discovery to application
- Quasi-bound and unbound regions (Challenges to describe a decaying system)
- Selected features (New results, new ideas)
 - Mass distributions
 - Prompt neutron yields
 - Even-odd effect in Z yields
- Experimental approaches (Recent achievements and plans)

Discovery of fission

O. Hahn, F. Straßmann, Naturw. 27 (1939) 89 U + n \rightarrow identification of Ba Image: Wikipedia

N. Bohr, J. A. Wheeler, Phys. Rev. 56 (1939) 426 Estimation of Q value and B_f

Original	Two Products	DIVISION	SUBSEQUEN
²⁸ Ni ⁶¹ ⁵⁰ Sn ¹¹⁷ ⁶⁸ Er ¹⁶⁷ ⁸² Pb ²⁰⁶ ⁹² U ²³⁹	14Si ³⁰ , 31 25Mn ⁵⁸ , 59 34Se ⁸³ , 84 41Nb ¹⁰³ , 103 46Pd ¹¹⁹ , 120	$ \begin{array}{r} -11 \\ 10 \\ 94 \\ 120 \\ 200 \end{array} $	$2 \\ 12 \\ 13 \\ 32 \\ 31$

Fissionable nuclei are hardly bound

Inside scission point: Nuclear + Coulomb potential

Outside scission point: Coulomb potential (1/r)

Why was the discovery of fission a surprise?

Light nuclei are governed by surface energy (like any uncharged liquid). The Coulomb repulsion of *homogeneously charged* nuclei drives heavy nuclei apart. Low barrier for symmetric split.

Energy release by fusion or fission

Image: Wikimedia Commons

Light nuclei and heavy nuclei are "fuel". (Fusion or fission reactors) Q value ≈ 200 MeV for fission of ²³⁵U. (Large energy density!)

Binding energy (liquid drop model)

Surface energy decreases binding of *light* nuclei. Coulomb energy decreases binding of *heavy* nuclei.

Origin of the stored energy

Neutron capture in r-process. Huge neutron flux during a few seconds.

(Late stellar burning, supernova, other cosmic scenarios?) r-process reaches to 238 U and beyond (SHE) \rightarrow fission cycling

s-process stops at ²⁰⁹Bi !

Fission cycling in the r process

Abundance Comparison vs Atomic Number

J. Beun et al., arXiv/0607280 (2006)

How far does the r process reach?

Is there "fission cycling"? \rightarrow Traces in the element distributions! Knowledge of fission barriers and fission-fragment distributions missing for nuclei on the r-process path.

Breeding in a fission reactor

Man-made element synthesis in a reactor: Neutron capture on ²³⁸U as seed. Production of ²³⁹Pu and "minor actinides". Problems of radioactive waste and proliferation.

Induced fission and chain reaction

Images: Wikimedia Commons

Prompt neutrons induce controlled or explosive burning.

Use and abuse

Images: Wikimedia Commons

Gigantic energy release.

Closer view on the physics of fission (Selected aspects)

Stabilization by the fission barrier (liquid drop)

Fission barrier vanishes for $Z^2/A > 50$

Small deformations:

$$\Delta E_{s} = E_{s0} \left(\frac{2}{5} \alpha_{2}^{2} - \frac{4}{105} \alpha_{2}^{3} \dots \right)$$

$$\Delta E_{c} = E_{c0} \left(\frac{1}{5} \alpha_{2}^{2} - \frac{4}{105} \alpha_{2}^{3} \dots \right)$$

Surface and Coulomb energy \rightarrow different behaviour.

Large deformation: Minimization in complex deformation space to find fission saddle.

Shell effects

Mosel and Schmitt, Nucl. Phys. A 165 (1971) 73

- V. Strutinsky, Nucl. Phys. A 502 (1989) 67
- Shell effects modulate the liquid-drop energy ($\approx 1\%$).
- Periodic in deformation, particle number etc.
- Defined by macroscopic-microscopic approach (Strutinsky method).

Potential on the fission path

In all other collective coordinates: (e.g. mass asymmetry, *N-Z*) the system is bound! Around ground state and second minimum: (quasi)-bound system

Above inner and outer barrier: transition states (doorway states towards fission)

Beyond outer barrier: unbound, no return, descend towards scission

Fission is a unique laboratory for a decaying mesoscopic system!

Fissionable nuclei are hardly bound

Fission is driven by a transformation of potential energy into other forms of energy, finally mostly ending up in kinetic and thermal energy.
 → Dissipative process + quantum mechanics.

Observables:

1. Mass distribution of fission fragments

Division in asymmetric fission

J. P. Unik et al. Rochester (1973): Asymmetric fission of most actinides. Position of the heavy peak is stable in mass (A=140). 1% in BE \rightarrow Huge effect in yields!

Refined analysis, new data: (Böckstiegel et al. (2008): Position of heavy peak is stable in *Z* (*Z*=54).

A = 140 vs Z = 54

Fixed position at Z=54 revealed from data over long isotopic chains!

Nuclide distributions calculated with the GEF code (adapted to empirical systematics)

Theoretical approaches on mass distributions in fission

Static:

• Potential-energy landscape

Dynamic:

- Classical dissipation model
- Microscopic model

Two-centre shell model

Macroscopic

+ microscopic

Karpov et al., J. Phys. G 35 (2008) 035104

Influence of fragment shells

Single-particle levels in a twocentre shell-model calculation.

For s > 1.8, the wave functions of opposite parity become degenerate.

s = 1.7 : outer barrier

Qualitative change of wave functions !

Nucleons are localized in the fragments very early

Mosel and Schmitt, Nucl. Phys. A 165 (1971) 73

Separability principle

Features of fragment shells: neutrons

I. Ragnarsson et al., Phys. Scr. 29 (1984) 385,

Theory: Asym. fission attributed to N=82 and $N\approx90$. Incompatible with constant position at Z=54?

Features of fragment shells: protons

I. Ragnarsson et al., Phys. Scr. 29 (1984) 385

No indication for shell near Z = 54! \rightarrow Challenge for theory.

Dynamical approach 1 Classical dissipative mechanics

Full treatment of all nuclear degrees of freedom too complex! -> Explicit treatment of (a few) slow collective variables. The other degrees of freedom are considered by a heat bath.

Langevin equations (simplified):

Change in "position" q is determined by momentum q:

$$\frac{dq}{dt} = \frac{p}{\mu(q)}$$

Change in momentum is determined by the forces:

inertia potential friction fluctuating term (heat bath) $\frac{dp}{dt} = \frac{1}{2} \left(\frac{p}{\mu(q)}\right)^2 \frac{d\mu(q)}{dq} - T \frac{dS(q)}{dq} - \frac{\gamma(q)}{\mu(q)} p + \sqrt{D(q)} f_L(t)$

Comparison with data

Randrup and Möller, Pys. Rev. Lett. 106 (2011) 132503 5-dimensional potential-energy surface, *N/Z* fixed, simplified (overdamped) diffusion calculation (Long computing times, 8 systems calculated.)

Dynamical approach 2 microscopic HFB - GCM

Constrained (elongation, mass asymmetry) time-dependent self-consistent calculation.

Fully quantum-mechanical approach.

Dynamics does not yet allow for dissipation (transition from potential/kinetic energy to single-particle excitations).

H. Goutte et al., Phys. Rev. C 71 (2005) 024316

Results

Dynamics around scission.

Mass distribution (²³⁸U, 2.4 MeV above Bf)

No dissipation, *N/Z* fixed, Requires long computing times. No other systems calculated up to now.

H. Goutte et al., Phys. Rev. C 71 (2005) 024316

Models on fission dynamics: Status

Calculated potential-energy landscapes explain gross features of the mass distributions (e.g. symmetric-asymmetric components).

Advanced dynamical theories are far from studying and explaining detailed and systematic experimental findings (e.g. the constant position at Z=54 of the heavy fragment).

Problem: Most highly developed theoretical tools in nuclear physics are restricted to bound systems.

Description of open (quasi-bound) systems is still a challenge. In particular difficulties in modelling dissipation.

Motivation to have an eye on therrmodynamical aspects! (Efficient method to consider laws of statistical mechanics.)

Observables:

2. Prompt neutron yields

Prompt neutrons in ²³⁷Np(n,f)

A. A. Naqvi et al., Phys. Rev. C 34 (1986) 218

Mass dependence: saw-tooth

Energy dependence: only in heavy fragment

Evolution towards scission

Saddle:
$$E^*_{sad} = E^*_{CN} - B_f$$

Scission:

Energy release from saddle to scission ends up in:

1.
$$E^*_{\text{scission}} = E^*_{\text{sad}} + E_{\text{dissipation}}$$

- 2. excitation of collective modes
- 3. kinetic energy

Sources of final excitation energy

E* is accumulated all along the fission process.

Energies at scission feeding prompt neutron emission from fragments

Prompt neutron emission has several sources!

Division between fragments is complex.

- **Deformation energy** (with respect to ground state of fragments): saw-tooth behaviour (feature of shells!)
- Collective excitations (e.g. rotations): approx. equal shares
- Intrinsic excitations: division acc. to hermodynamical equilibrium $(T_1 = T_2)$? Requires a closer look on the pre-scission configuration.

Non-consistent properties (before/after fission)

	Mono-nucleus	Fragments
Shells	One object	Separate objects
Pairing	12/Sqrt(A _{CN})	12/Sqrt(A _{fragment})
Congruence energy	(N-Z)/A	(N-Z)/A

Theoretical studies on the gradual transition:U. Mosel, H. Schmitt, Phys. Rev. C 4 (1971) 2185.H. J. Krappe, S. Fadeev, Nucl. Phys. A 690 (2002) 431.W. D. Myers, W. J. Swiatecki, Nucl. Phys. A 612 (1997) 249.

Fragments acquire their individual properties well before scission!

Constant temperature of nuclei

M. Guttormsen et al., Phys. Rev. C 63 (2001) 044301 "Oslo method" Rather exact constanttemperature behaviour:

 $\rho(E^*) \propto \exp(E^*/T)$

Effective number of degrees of freedom:

$$n_{eff} \propto E^*$$

(Phase transition: Melting of pairs)

Voinov et al. PRC 79 (2009) 031301: Constant temperature up to 20 MeV!

Theory: Heat capacity

Increased heat capacity due to melting of pairs. (T=const. would correspond to C = delta function !)

Some discrepancy between experiment and theory.

Application to fission

Each of the nascent fragments has an energyindependent temperature.

$$T \propto A^{-2/3}$$
 (v. Egidy)

(Some additional influence of shell effects.)

Entropy considerations

S: linear function of energy partition: All energy flows to the "colder" (heavy) fragment. Energy sorting! K.-H. Schmidt. B. Jurado, PRL 104 (2010) 212501, K.-H. Schmidt, B. Jurado, PRC 83 (2011) 061601

More exact result for T = const.

Directly based on statistical mechanics (number of available states).

Energy sorting is not complete due to properties of finite nuclei.

Microscopic view on energy transfer

Single-particle occupation functions: (Fermi levels are equal: no net mass transfer.)

2 possible scenarios:

- Breaking of pairs (if pairing reaches through the neck and the separate nucleons remain in different fragments)

- Nucleon transfer transports energy from hotter to colder nascent fragment due to different occupation functions.

Mechanism of energy transfer

Large steps, large fluctuations (assure thermal averaging) K.-H. Schmidt, B. Jurado, Phys. Rev. C 82 (2011) 014607

²³⁷Np(n,f) prompt neutron yields

The additional energy of the more energetic neutron ends up in the heavy fragment. \rightarrow Proof of energy sorting!

Previous attempts with Fermi-gas level density $\rho(E^*) \propto \exp(2\sqrt{aE^*})$ could not explain! ($\rightarrow E_1^*/E_2^* = A_1/A_2$)

Observables:

3. Even-odd effect in Z yields (defined at scission)

Structure in Z yields

Modes and even-odd effect

Pairing gap $\Delta \approx 10-3$ of BE \rightarrow up to 50 % in the yields!

Systematics of even-odd effect

Caamano et al., J. Phys. G. 38 (2011) 035101

Only few systems measured.

Strong variation from 229 Th(n_{th},f) to 249 Cf(n_{th},f).

Asymmetry parameter:

$$a = \frac{Z_{heavy} - Z_{light}}{Z_{heavy} + Z_{light}}$$

Dependencies and correlations

0.4

0.3

0.2

0.1

0.0

1350

Ю

Caamano et al., J. Phys. G. 38 (2011) 035101

No clear answer on the origin of the even-odd effect.

1450

Z² / A^{1/3}

1500

Global even-odd effect

1400

$$\delta = \frac{\sum_{even} Y_z - \sum_{odd} Y_z}{\sum_{all} Y_z}$$

Refined analysis

0.6 $\delta(Z)$ = local even odd effect 0.5 230Th (4-point logarithmic difference) 236U 0.4 234U δ(Z) 239Np 0.3 240Pu 243Am 0.2 246Cm 250Cf 0.1 0.0 0.20 0.00 0.05 0.10 0.15 0.25 0.30 0.35 040 а

0.7

Conclusion:

- 1. Even-Z fragments are generally enhanced in the light fragment.
- 2. The even-odd effect grows with asymmetry.
- 3. The even-odd effect globally decreases for heavier systems.
- 4. The even-odd effect of odd-Z fissioning systems is similar.

Caamano et al., J. Phys. G. 38 (2011) 035101

Entropy gain by forming a light fragment with even Z and even N

Even-odd effect \rightarrow Enhanced production of even-even nuclei in the ground state!

Assume the light fragment has arrived at $E_{1}^{*} = 0$, but *Z* and/or *N* are odd.

The system can still gain considerable entropy by exchanging eventually 1 proton and 1 neutron to form an even-even light fragment!

Entropy gain up to $\Delta S = 2 \cdot \Delta / T_2$!

Potential energy gain from saddle to scission

Asghar, Hasse, J. Phys. Coll. 1984

Dissipated energy is expected to scale with the energy release.

Time evolution of energy sorting

Energy sorting needs time.

Time window for proton transfer closes at t_{ρ} due to growing Coulomb barrier.

Model vs. data

Schematic model (threshold behaviour of asymmetrygenerated even-odd effect with fluctuations) reproduces the empirical features!

Model included in the GEF code (www.cenbg.in2p3.fr/GEF) K.-H. Schmidt, B. Jurado arXiv:1007.0741v1 [nucl-th] New interpretation of saddle-scission dynamics in terms of thermodynamics

Experimental signatures: prompt neutron yields even-odd effect reveal complex dynamical processes on the descent from saddle to scission.

Even-odd effect in fission is a new kind of nuclear clock which links heat transfer through the neck in the regime of strong pairing correlations with saddle-to-scission time.

Experimental techniques

Mass and Z distributions from low-energy fission

Off-line gamma spectroscopy

Laurec et al., NDS 111 (2010) 2965

Gubbi et al., PRC 59 (1999) 3224

Independent yields for different initial energies Too slow for short-lived fission products Relies on spectroscopic information (Almost) no information on kinematics

Double energy / double TOF

Bucheneb et al., NPA 502 (1989) 261c

Hambsch in NPA 654 (1999) 855c

Pre-neutron / post-neutron masses ($\Delta A \approx 2$) Prompt neutron yields can be deduced Kinematical information (TKE)

Lohengrin

Lohengrin: Spectrograph at ILL high-flux reactor U. Quade et al., NPA 487 (1988) 1

Djebara et al., NPA 496 (1989) 346

Good Z resolution in light fragments. Restricted to (n_{th}, f) and long-lived targets.

Coulomb fission of relativistic ²³⁸U projectile fragments

The detectors

Identification of both fragments in Z

Access to radioactive nuclei (A<238) Excellent Z resolution

Mapping symm. - asymm. fission

Schmidt et al., NPA 665 (2000) 221

Transfer in inverse kinematics

Access to nuclei around ²³⁸U Good A and Z resolution Well-defined excitation energy

FELISE at FAIR

Fission of ²³⁸U fragments in inverse kinematics induced by tagged photons

Mass and Z distributions from low-energy fission

Summary

Mankind learned to exploit heavy nuclei as fuel.

- Energy production with good CO_2 balance (+)
- Radioactive waste (-), risk (-)
- Physics of fission still badly understood \rightarrow fission cycling
- Fascinating physics of a quasi-bound system
- Dynamics with shell structure and residual interactions
- Most advanced concepts of nuclear physics not applicable to non-equilibrium processes – need for novel concepts
- Theory I: Statics (potential energy surface)
- Two-centre shell model
- Early influence of fragment shells and other fragment properties
- Theory II: Fission dynamics (descend towards scission)
 - Classical dissipation equation (no QM, 5-dim. is still not sufficient.)
- Microscopic dynamical model (HFB) (2-dim., no dissipation yet)
- New: Thermodynamics (discovery of energy sorting, new insight into dynamical aspects of fission)