Probing the nucleon structure What have we learnt during the last 30 years?

Nicole d'Hose, Irfu – CEA Saclay La Colle sur Loup, Sept 16, 2011

A brief story of the nucleon

Proton and neutron are the basic building blocks of the visible matter of the universe

Nucleon Identity card (PDG):

Proton	Neutron
Q=+e	Q=0
M _p =938.27 MeV	M _n =939.57 MeV
$S = \frac{1}{2}$	$S = \frac{1}{2}$
μ_{p} =2.79 μ_{N} (κ_{p} =1.79)	μ_n =-1.91 μ_N (κ_n =-1.91)

A brief story of the nucleon

Identified in 1919 (proton) and 1932 (neutron) Until 1933: they were thougth as a point-like particle, like electron

A brief story of the nucleon

1933-1960: extented object

1933: *Stern (NP 1943)* measured the anomalous magnetic moment 1rst evidence the proton is not point -like

1955: Stanford : e⁻ beam of 1 GeV \rightarrow elastic scattering Hofstadter (NP 1961) measured the charge radius of the proton \approx 0.8fm

A brief story of the nucleon

1960-1980: nucleon composed of quarks and gluons

1964: *Gell-Mann* and *Zweig (NP 1969)* postulated that there are 3 quarks in the proton: u u d -> hadron spectroscopy and classification

1969: Stanford: e⁻ beam of 20 GeV → deep inelastic scattering

Friedman, Kendall, Taylor (NP 1990) found quarks in the proton

Feynman, BjorkenGross, Politzer, Wilczek (NP 2004)Quantum ChromoDynamics (QCD)

✓ Asymptotic Freedom✓ Confinement

In 1980:

We know a lot and we know little

Proton is made of 2 up quarks (e=2/3) + 1 down quark (e=-1/3) + any number of quark-antiquarks + any number of gluons

Still fundamental questions ?

Origin of mass? $M_p \approx 2000 \times M_{e}$ ~10% from Higgs interaction ~90% comes from the motion of quarks and gluons

Proton spin crisis 1987: the valence quarks contribute very little to the proton spin

QCD: still unsolved in non-perturbative region

Gross, Politzer, Wilczek (NP 2004) Asymptotic freedom

Non perturbative regime of QCD One of the top 10 challenges for physics Nucleon structure provides much insight about how QCD works in the confinement regime

Understanding the nucleon structure

Solving QCD

- Numerically simulation, lattice calculations continue to make advances in techniques and computing power
- ✓ Effective field theories (chiral physics, large Nc, ...)
- ✓ (Phenomenological models, fits of structure functions...)

Experimental probes

- Require clean reaction mechanisms with photons, electrons
- ✓ through low and high-energy scattering off the nucleon

Probing the nucleon structure What has been done during the last 30 years?

Old Chinese compass

Exploration

Probing the nucleon structure What has been done during the last 30 years?

Hand-held compass

Consolidation

Probing the nucleon structure What has been done during the last 30 years?

Precision

Probing: Lepton-nucleon scattering

Hypotheses: ✓One photon exchanged ✓M_{e-} <<

$$\begin{aligned} Q^2 &= -q^2 = 4 \ E \ E' \ \sin^2 \theta/2 \ > 0 \\ x_B &= Q^2/(2p.q) = Q^2/(2M_p(E-E')) \\ & \text{in lab.} \\ & \text{for fixed target} \end{aligned}$$

Elastic Scattering: X=proton $s = (p+q)^2 = M_p^2 - Q^2 + 2p.q = M_p^2 \implies x_B = 1$ at fixed beam energy E, only one variable Q² (E' and θ are not independent)

- Form Factors (Q²) => Consolidation and Exploration at higher Q²
- Nucleon radius (from $Q^2 \rightarrow 0$) => High Precision, but also need of Consolidation

Probing: Lepton-nucleon scattering

Hypotheses: ✓One photon exchanged ✓M_{e-} <<

 $Q^2 = -q^2 = 4 E E' \sin^2 \frac{\theta}{2} > 0$

 $x_B = Q^2/(2p.q) = Q^2/(2M_p(E-E'))$ in lab. for fixed target

Deep Inelastic Scattering (DIS): the proton is broken in many debris X

 $s = (p+q)^2 = M_p^2 - Q^2 + 2p.q > M_p^2 = 0 < x_B < 1$

at fixed beam energy E, 2 variables (E' , $\theta)$ or (Q² , $x_{\rm B})$

We learnt that :

$$\sigma_{\text{DIS}}(\text{ep} \rightarrow \text{e X}) = \sum_{\substack{q \text{ incoherent}}} \sigma_{\text{elastic}}(\text{eq} \rightarrow \text{eq})$$

Probing: Lepton-nucleon scattering

longitudinal size contracted time dilatation time_{hadronization} >> time γ^*q interaction

Deep Inelastic Scattering (DIS):

$$\sigma_{\text{DIS}}(\text{ep} \rightarrow \text{e X}) = \Sigma_{\text{q}} \sigma_{\text{elastic}}(\text{eq} \rightarrow \text{eq})$$

incoherent

Quark parton model (QPM)

- Point-like, non-interacting partons
- Collinear to the nucleon movement in photon-nucleon collision (longitudinal direction)
- Each parton carries a fraction x of the nucleon momentum and for the struck parton: x= x_B
- Scaling: observables function of x_B (at first order)

Parton Distribution Functions (PDF (x))

unpolarized => High precision

polarized => Nucleon Spin Crisis Consolidation

More on transverse information

momentum: Transverse Momentum Dependent PDF position: Generalized Parton Distributions (GPD) => Exploration in 3D

Lepton nucleon or nucleus scattering

Elastic: $\Delta x = \hbar c / \overrightarrow{|Y|}$ exploration of distance of 1 fm with 200 MeV Deep Inelastic: q and ω varie independently $\Delta t = \hbar c / \omega$ instantaneous picture to observe free proton

The main facilities in the world (1980-2015)

+KEK 6 GeV e[±] (Belle) + MAMI (Mainz Microtron) 1.5 GeV e-

The main facilities in the world (1980-2015)

+KEK 6 GeV e[±] (Belle) + MAMI (Mainz Microtron) 1.5 GeV e-

Kinematic domain (Q², x_B) for DIS

Elastic Scattering

- Form Factors (Q²) => Consolidation and Exploration at higher Q²
- nucleon radius (from $Q^2 \rightarrow 0$) => Very High Precision and Consolidation

Elastic Scattering

Spin-less point-like electron in a the static Coulomb field given by a charge Z of infinite mass

$$\begin{aligned} \frac{d\sigma}{d\Omega} &= |f(\vec{q})|^2 = \left(\frac{Z\alpha}{2k}\right)^2 \frac{1}{\sin^4 \theta/2} |F(\vec{q})|^2 \qquad F(\vec{q}) = \int \rho(\vec{r}) e^{i\vec{q}\vec{r}} d^3\vec{r} \\ &= \sigma_{\text{Rutherford}} \qquad |F(\vec{q})|^2 \end{aligned}$$

Relativistic calculation for a spin ½ electron in the EM field given by a charge +e and finite mass

$$\frac{d\sigma}{d\Omega} = \sigma_{Mott} \frac{E}{E_{ecoil}} \times |F(\vec{q})|^2 \text{ with } \sigma_{Mott} = \frac{\alpha^2 \cos^2(\theta/2)}{4E^2 \sin^4(\theta/2)}.$$
$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{point} \times |F(\vec{q})|^2 \text{ The Form Factor measures the deviations from a structure less particle}}$$

•Point particle : $\rho(\vec{r}) = \delta(\vec{r}) \qquad F(\vec{q}) = 1$

•Spherical distribution: $\rho(\vec{r}) = \rho(r)$ $F(\vec{q}) = \frac{4\pi}{q} \int_0^\infty \rho(r) \sin(qr) r dr$

 $= 1 - \frac{\vec{q}^{\,2}}{6} \langle r^2 \rangle + \frac{\vec{q}^{\,2}}{120} \langle r^4 \rangle + \dots \quad \text{Taylor expans.}$

$$\langle r^2 \rangle = -6 \frac{\partial F}{\partial \vec{q}^2} |_{\vec{q}^2 = 0}$$

Quadratic mean charge radius of the nucleon

Form Factors for sphere or nucleus

Minima due to the discontinuity of $\rho(\mathbf{r})$

Real nucleus without discontinuity => Diffractive minimum partly filled

Scattering on a spin $\frac{1}{2}$ particle: ep \rightarrow ep

 $\left|\mathcal{M}^{(e,p)}\right|^2 \Longrightarrow \frac{1}{4} \sum_{s_e, se's_p, s_{p'}} \left|\mathcal{M}^{(e,p)}\right|^2$

General expression for the hadronic current according symmetries of the interaction

Scattering on a spin $\frac{1}{2}$ particle: ep \rightarrow ep

$$\left(\frac{d\sigma}{d\Omega}\right)_{lab} = \sigma_{Mott} \frac{E'}{E} \begin{bmatrix} F_1^2 + \tau F_2^2 + \tau (F_1 + F_2)^2 \tan^2 \frac{\theta}{2} \end{bmatrix}$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{lab} = \sigma_{Mott} \frac{E'}{E} \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2 \frac{\theta}{2}\right]$$

characterize the magnetic interaction with a particle of spin 1/2

$$\left(\frac{d\sigma}{d\Omega}\right)_{lab} = \sigma_{Mott} \frac{E'}{E} \left[\frac{\epsilon G_E^2 + \tau G_M^2}{\epsilon(1+\tau)}\right]$$
$$\epsilon = \left[1 + 2(\vec{q}^2/Q^2)\tan^2(\theta/2)\right]^{-1}$$

$$\tau = \frac{Q^2}{4M_p^2}$$

Electric and Magnetic Sachs Form Factors (Fourier Transform (TF) of the charge and magnetization distribution in the breit frame or brick-wall frame)

$$G_E(Q^2) = F_1(Q^2) - \tau F_2(Q^2) \qquad G_E(0) = Q$$

$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2) \qquad G_M(0) = \mu_N$$

Measurement of Form Factors (Q²)

Rosenbluth separation:

We plot
$$\sigma_{\rm R} = \epsilon (1 + \tau) \frac{d\sigma}{d\Omega} \frac{E}{E'} \frac{1}{\sigma_{Mott}} = \epsilon G_E^2 + \tau G_M^2$$

Fixed $Q^2 \rightarrow$ use of different beam energies to get different ε

Different scattering angles
 large systematic effects on the slope = G_E

$$\succ$$
 At large Q2 $~~G_{E}^{2}\ll au G_{M}^{2}$

 \rightarrow Method to determine G_M

Measurement of proton Form Factors (Q²) by Rosenbluth separation

FT -> exponential distribution $\rho(r) = \exp(-0.84 r)$ non physical

deviation from the dipolar approximation

Measurement of proton Form Factors (Q²) by Rosenbluth separation

deviation from the dipolar approximation

as they cancel out in the ratio

JLab - Hall A

Measurement of proton Form Factors (Q²)

Difference persists between two techniques

- Jlab Rosenbluth separation data confirm earlier data and global analysis
- No evidence for experimental errors for either of the experimental techniques
- Two photon exchange (TPE) amplitudes can explain a significant part of the discrepancy
- Intensive theoretical and experimental effort on adressing the TPD effect

2 photon exchange proposed as an explanation

What we learnt from the Q² Evolution?

What we learnt from the Q² Evolution?

Lattice QCD calculations

Neutron Form Factor as a function of Q²

S

No stable free neutron target

Neutron form factors measured using quasi-elastic electron scattering from deuteron target (p+n) or polarized ${}^{3}H_{e}$ target

Meaning of $G_e^{\ p}$ and $G_E^{\ n}$

The proton and neutron charge distributions obtained from Fourier Transform of G_e^P and G_eⁿ

 $Q = \int \rho(\mathbf{r}) \ 4\pi r^2 d\mathbf{r} = 0$ $\langle r_n^2 \rangle = \int r^2 \rho(\mathbf{r}) \ 4\pi r^2 d\mathbf{r} < 0$ $\left\langle r_n^2 \right\rangle = (-0.1148 \pm 0.0035) \text{ fm}^2$

2008 Blast MIT
What is the real size of the proton ?

The Muonic hydrogen Lamb shift gives the most precise measurement of the proton charge radius with an unprecedented precision of 0.1%

This value is much smaller (5 standard deviations) than the other measurements using e-p scattering and standard Lamb shift.

UNEXPECTED!

Publication: 8 July 2010 and quickly spread on all the media

Then:

✓ 16 theoretical papers in 2 months✓ several planned experiments

Proton Form Factor

Focus on measurements at large Q²

but what is the situation at low and very low Q^2 ?

2010 (PRL105 MAMI Bernauer et al.): The lowest Q² is 4×10⁻³ GeV², super Rosenbluth separation

> 2011 (Jlab Zhan et al.) : $Q^2 \in [0.3 : 0.7]GeV^2$, Polarization technique

> Planned experiment Q² $[2 \times 10^{-4} : 2 \times 10^{-2}]$ GeV² in the future at JLab

Results for the proton charge radius

r_F^p in the 2 last years

r_F^p before 2010 0.00 r_{F}^{p} =0.879 ± 0.008 0.92 $r_{F}^{p}=0.875\pm0.010$ 0.9Proton charge radius [fm] 0.88 0.880.86[fm] r_{F}^{p} =0.8768 ± 0.0069 0.840.860.82 $\langle r_E \rangle$ 5σ r_{F}^{p} =0.84184 \pm 0.00067 0.8 0.840.78Bernauer et al Zhan et al Pohl et al. CODATA 0.76Sick 0.820.748 00 8 80 2 5 50 8 8 8 6 z 8 e 5 5 (J. Bernauer) Belushkin Hand Frerejacque Simon Nong Jdem Rosenfelder Eschrich McCord Mergell Sick Blunden Borkowsk Melnikov CODATA Akimov ODATA 2010 2003 2006 2010 2011 e-p scattering CODATA standard muonic recommended values Hydrogen Lamb shift of the Fundamental Constants

Lamb shift

Energy

(1947) subtle difference between the binding energies of the $2S^{1/2}_{2}$ and $2P^{1/2}_{2}$ (pure radiative QED effects such as 'self energy' and 'vacuum polarization')

There is also extra corrections for hyperfine splitting, recoil and proton structure... n=2 $2P_{3/2}$ P=1 $2S_{1/2}$ $2S_{1/2}$ $2S_{1/2}$ $2S_{1/2}$ F=1F=0

Muonic hydrogen Lamb shift and proton radius

muonic hydrogen = $\mu^- p$ mass m_{μ} = 207 m_e

$$\Delta E_{\rm finite \ size}(nl) = \frac{2(Z\alpha)^4 c^4}{3\hbar^2 n^3} \, m_r^3 \, r_{\rm p}^2 \, \delta_{l0}$$

Lamb shift in $\mu p: \Delta E(2P_{3/2}^{F=2} - 2S_{1/2}^{F=1})$ =

$$209.9779(49) - 5.2262 r_p^2 + 0.0347 r_p^3$$
 [meV]

finite size contribution is 2% of the μp Lamb shift

μp Lamb shift experiment: principle

New 5keV muon beam line at PSI

Muons stopped in H₂ gas at low pressure \rightarrow excited µp atoms (n=14) are formed

μp Lamb shift experiment: principle

New 5keV muon beam line at PSI

Muons stopped in H2 gas at low pressure \rightarrow excited µp atoms (n=14) are formed

μp Lamb shift result

UNEXPECTED: Skrinking the proton

Conclusion: what is wrong ?

- Spectroscopy: Missing element in the QED corrections in the bound µp system...
- Lepton Scattering: Need of very precise and very low Q2 data...

The proton, already an old-fashioned objet, but still embedded in exciting challenges

Deep Inelastic Scattering

Parton Distribution Functions (PDF (x))

unpolarized => High precision
polarized => Nucleon Spin Crisis Consolidation

More on transverse information momentum: Transverse Momentum Dependent PDF position: Generalized Parton Distributions (GPD) => Exploration in 3D

Probing: Lepton-nucleon scattering

Deep Inelastic Scattering:

$$\sigma_{\text{DIS}}(\text{ep} \rightarrow \text{e X}) = \Sigma_{\text{q}} \quad \sigma_{\text{elastic}}(\text{eq} \rightarrow \text{eq})$$

incoherent

Quark parton model (QPM)

- Point-like, non-interacting partons
- Collinear to the nucleon movement in photon-nucleon collision (longitudinal direction)
- Each parton carries a fraction x of the nucleon momentum and for the struck parton: x= x_B
- Scaling: observables function of x (at first order)

The inclusive cross section is described by 4 structure functions:

unpolarized F1(x), F2(x), $F_1(x) = \frac{1}{2} \sum_{q=u,d,s} e_q^2 q(x) = \frac{F_2(x)}{2x}$ $q(x) = q^+(x) + q^-(x)$

probablity of finding a quark with a fraction x of the nucleon longitudinal momentum polarized g1(x), g2(x) $g_1(x) = \frac{1}{2} \sum_{q=u,d,s} e_q^2 \Delta q(x)$ $g_2(x) = 0$ $\Delta q(x) = q^+(x) - q^-(x)$

probablity of finding a quark with a momentum fraction x and spin // to that of the nucleon

Probing: Lepton-nucleon scattering

Deep Inelastic Scattering:

$$\sigma_{\text{DIS}}(\text{ep} \rightarrow \text{e X}) = \Sigma_{\text{q}} \quad \sigma_{\text{elastic}}(\text{eq} \rightarrow \text{eq})$$

incoherent

Quark parton model (QPM)

- Point-like, non-interacting partons
- Collinear to the nucleon movement in photon-nucleon collision (longitudinal direction)
- Each parton carries a fraction x of the nucleon momentum and for the struck parton: x= x_B
- Scaling: observables function of x (at first order)

The inclusive cross section is described by 4 structure functions:

unpolarized F1(x), F2(x), $F_{1}(x) = \frac{1}{2} \sum_{q=u,d,s} e_{q}^{2}q(x) = \frac{F_{2}(x)}{2x}$ $q(x) = q^{+}(x) + q^{-}(x)$ probablity of finding a quark with a fraction x

of the nucleon longitudinal momentum

polarized g1(x), g2(x) $g_1(x) = \frac{1}{2} \sum_{q=u,d,s} e_q^2 \Delta q(x)$ $g_2(x) = 0$ $\Delta q(x) = q^+(x) - q^-(x)$

Probing: Lepton-nucleon scattering

Deep Inelastic Scattering:

$$\sigma_{\text{DIS}}(\text{ep} \rightarrow \text{e X}) = \Sigma_{\text{q}} \quad \sigma_{\text{elastic}}(\text{eq} \rightarrow \text{eq})$$

incoherent

QCD improved parton model

- at finite Q², partons interact
 - \rightarrow PDFs and structure functions depend on Q²
 - \rightarrow gluons are visible (in the Q² evolution)

The inclusive cross section is described by 4 structure functions:

unpolarized
F1(x, Q2), F2(x, Q2),polarized
g1(x, Q2), g2(x, Q2) $F_1(x) = \frac{1}{2} \sum_{q=u,d,s} e_q^2 q(x) = \frac{F_2(x)}{2x}$ $g_1(x) = \frac{1}{2} \sum_{q=u,d,s} e_q^2 \Delta q(x)$ $g_2(x) = 0$ $q(x) = q^+(x) + q^-(x)$ $\Delta q(x) = q^+(x) - q^-(x)$ $\Delta q(x, Q^2)$ quark PDF $q(x, Q^2)$ $\Delta q(x, Q^2)$ $\Delta q(x, Q^2)$ and gluon PDF $G(x, Q^2)$ from F_1 evolution $\Delta G(x, Q^2)$ from g_1 evolution

Factorisation scale Q² few GeV²

Unpolarized quark and gluon PDF

Global fit on the world data

Universality of PDF

Physical cross section = cross section for partonic process ($\gamma^*q \rightarrow q$ or $qq \rightarrow \gamma^*$) × PDF

Deep Inelastic Scattering (DIS) $\ell p \rightarrow \ell' X$

Drell Yan (DY) $\pi p \rightarrow \ell^+ \ell^- X$

Factorisation: scheme dependent!

nucleon spin crisis

$\Delta q(x)$ and $\Delta q = \int_0^1 \Delta q(x) dx$ $\Delta G(x)$ and $\Delta G = \int_0^1 \Delta G(x) dx$

Need of longitudinally polarized beam and longitudinally polarized target

The spin of the nucleon

~ 0.12 ± 0.17 EMC (1987) surprise!

The structure function g₁ and its first moment

$$\mathbf{g}_{\mathbf{1}}(\mathbf{x}) = \frac{1}{2} \sum_{q=u,d,s} e_q^2 \Delta q(\mathbf{x}) \qquad \qquad \Gamma_{\mathbf{1}} = \int_0^1 \mathbf{g}_{\mathbf{1}}(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

In naive QPM + SU(3)

$$\Gamma_{1}^{p} = \frac{1}{2} \left\{ \frac{4}{9} \Delta u + \frac{1}{9} \Delta d + \frac{1}{9} \Delta s \right\} \quad \text{with} \quad \Delta q = \int \Delta q(x) dx$$
$$= \frac{1}{12} \underbrace{(\Delta u - \Delta d)}_{a_{3}} + \frac{1}{36} \underbrace{(\Delta u + \Delta d - 2\Delta s)}_{\sqrt{3}a_{8}} + \frac{1}{9} \underbrace{(\Delta u + \Delta d + \Delta s)}_{a_{0}}$$

General sum rule (OPE)

$$\Gamma_{1}^{p,n} = \frac{1}{12} \left(\pm a_{3} + \frac{1}{\sqrt{3}} a_{8} \right) + \frac{1}{9} a_{0}$$
Neutron decay
$$g_{A}/g_{V} \rightarrow a_{3}$$
hyperon decay
$$3F-D \rightarrow a_{8}$$

$$Q^{2} \neq \infty$$

$$a_{0} = \Delta u + \Delta d + \Delta s \equiv \Delta \Sigma$$

measured first by EMC in 1987

 $a_0 = 0.12 \pm 0.17$ surprise!

The structure function g₁ and its first moment

$$\mathbf{g}_{\mathbf{1}}(\mathbf{x}) = \frac{1}{2} \sum_{q=u,d,s} e_q^2 \Delta q(x) \qquad \qquad \Gamma_{\mathbf{1}} = \int_0^1 \mathbf{g}_{\mathbf{1}}(\mathbf{x}) \, \mathrm{d}x$$

In naive QPM + SU(3)

$$\Gamma_{1}^{p} = \frac{1}{2} \left\{ \frac{4}{9} \Delta u + \frac{1}{9} \Delta d + \frac{1}{9} \Delta s \right\} \quad \text{with} \quad \Delta q = \int \Delta q(x) dx$$
$$= \frac{1}{12} \underbrace{(\Delta u - \Delta d)}_{a_{3}} + \frac{1}{36} \underbrace{(\Delta u + \Delta d - 2\Delta s)}_{\sqrt{3}a_{8}} + \frac{1}{9} \underbrace{(\Delta u + \Delta d + \Delta s)}_{a_{0}}$$

General sum rule (OPE)

$$\Gamma_1^{p,n} = \frac{1}{12} \left(\pm a_3 + \frac{1}{\sqrt{3}} a_8 \right) + \frac{1}{9} a_0$$

measured first by EMC in 1987 A crisis in the parton model: where, oh where is the proton's spin?

E. Leader¹ and M. Anselmino²
 Birkbeck College, University of London, London, UK
 Dipartimento di Fisica Teorica, Università di Torino, I-10125 Torino, Italy

Received 18 March 1988

 $\mathbf{Q}^{2} \neq \infty$ $\mathbf{a}_{0} = \Delta \mathbf{u} + \Delta \mathbf{d} + \Delta \mathbf{s} \equiv \Delta \Sigma$

 $a_0 = 0.12 \pm 0.17$ surprise!

How to solve the spin crisis?

Pauli and Bohr wondering about a tip top toy (1955)

In polarised DIS, one measures a_0 flavor singlet axial matrix element at $Q^2 \neq \infty$

In the MS renormalisation scheme

a₀ = ΔΣ

 While in the Adler-Bardeen and JET schemes (axial anomaly)

 $a_0 = \Delta \Sigma - (\alpha_s/2\pi) n_f \Delta G$

So a large positive value of ΔG (~3 at Q²=3 GeV²) might resolve the spin crisis ?

COMPASS points to nucleon spin

LHC DETECTORS First cosmic rays for ALICE p8 NEW PARTICLES In search of the elusive axion p19 CENTENARY Majorana: genius and mystery p23 Huge effort during the past 20 years Today: COMPASS, HERMES, RHIC

▶ new measurements of g1, ∆q
 ▶ first measurements of ∆G

Polarized Beam + Polarized Target ⁶LiD(d) and NH₃(p)

u–beam

• to be measured:

$$A_{\parallel} = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}}$$

• flux normalization:

$$A_{\exp} = \frac{N_u - N_d}{N_u + N_d}$$

• acceptance difference: Polarisation rotation

Upstream

cell

 N_{u}

Downstream

Nd

polarization rotation every 8h Compass

spectro

cell

take average asymmetry:

$$\Rightarrow A_{\exp} = \frac{A+A'}{2} = \frac{1}{2} \left(\frac{N_u - N_d}{N_u + N_d} + \frac{N'_d - N'_u}{N'_u + N'_d} \right)$$

⇒ minimization of bias

elegant and efficient strategy

Asymmetry measurement

$$\frac{A_{\rm exp}}{f P_{\mu} P_T D} \simeq A_1$$

• Inclusive scattering

$$A_{1} = \frac{\sum_{q} e_{q}^{2} g_{1}^{q}(x, Q^{2})}{\sum_{q} e_{q}^{2} f_{1}^{q}(x, Q^{2})}$$

D depolarization factor P_{μ} target polarization P_{τ} target polarization f dilution factor

Spin Structure Function g₁(x,Q²)

Direct Access to the Gluon polarisation (SIDIS) $p \rightarrow l' h X$

Gluon Polarization: from LO to NLO

♦ All results compatible with avec 0 ! (a0= Δ Σ)
 ♦ Confirmed by RHIC results in pp

Let's go to measure L_z!

So far the partons were consider collinear to the nucleon movement in photon-nucleon collision (longitudinal direction), but what else about the transverse information?

Transverse spin and transverse momentum

Proton Sivers effect in tranv. pol. SIDIS: $\ell p \uparrow \rightarrow \ell' h X$

Azimuthal cross-section asymmetry:

 $\frac{\Delta\sigma}{\sigma} \propto A_{Siv} \sin \Phi_S$ $\Phi_S = \phi_h - \phi_S$

After a long debate this effect is actually observed

Observation of large transverse single spin asymmetries

 $p p \uparrow \rightarrow \pi^{+/-/0} + X$

persisting at large energy

CERN Courier, June 2009

and what's next

Focus on transverse structure of the nucleon

Transverse Momentum Dependent TMD PDF \rightarrow Study of SIDIS and DY

the seneral wiener in the seneral wiener distributions cominstrom Transverse size and orbital angular momentum : Generalized Parton Distributions (GPDs) \rightarrow Study of Exclusive reactions

- COMPASS-II programme (2012-2016)
- Jlab 11 GeV (start in 2014)
- RHIC
- JPARC
- and more future ENC, eRHIC/ELIC, NICA

from inclusive reactions

to exclusive reactions

Observation of the Nucleon Structure in 1 dimension

in 1+2 dimensions

From 1D

to 3D

Functional MRI: tomography of heart activity

Generalized Partons Distributions (H,E,...)

- Allow for a unified description of form factors and parton distributions
- Allow for transverse imaging (nucleon tomography) and give access to the quark angular momentum (through E)

Longitudinal momentum fraction \boldsymbol{x}

Tomographic parton images of the nucleon

Contributions of DVCS and BH at E=160 GeV

Transverse imaging at COMPASS d V^{CS}/dt ~ exp(-B|t|)

$$B(x_B) = \frac{1}{2} < r_{\perp}^{-2}(x_B) >$$

distance between the active quark and the center of momentum of spectators

Transverse size of the nucleon

mainly dominated by $H(x, \xi=x, t)$

related to
$$\frac{1}{2} < b_{\perp}^{2}(x_{B}) >$$

distance between the active quark and the center of momentum of the nucleon

Impact Parameter Representation

 $q(x, b_{\perp}) \iff H(x, \xi=0, t)$

Transverse imaging at COMPASS d VCS /dt ~ exp(-B|t|)

without any model we can extract $B(x_B)$ $B(x_B) = \frac{1}{2} < r_{\perp}^{-2}(x_B) >$ r_{\perp} is the transverse size of the nucleon Accuracy > 2.5 of $\alpha' = 0.125$ and full ECALS

Transverse imaging at COMPASS d VCS /dt ~ exp(-B|t|)

2012: we can determine one mean value of B in the COMPASS kinematic range

The GPD E is the 'Holy-Grail' of the GPD quest

the GPD E allows nucleon helicity flip so it is related to the angular momentum

Ji sum rule: $2J_q = \int x (H^q (x,\xi,0) + E^q (x,\xi,0)) dx$

Constrains on the GPD E

-Using a neutron target $A^n \propto F_1(t) \cdot H - \frac{t}{4M^2} F_2(t) \cdot E$

-Using a transversely polarized protontarget $A_T^p \propto F_2(t) \cdot H - F_1(t) \cdot E$

Potential of these experiments

A model-dependent case-study

In the near future

Two main actors

- COMPASS (sea quarks and gluons)
- Jlab (valence domain, with a huge luminosity

An important activity For global fits on the world data (Mueller, Guidal, Moutarde, ...)

Lattice QCD calculations

Ph. Haegler, 2010

Nucleon Spin is fun!

Still a long and exciting trip